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ABSTRACT 
A new all-time model is developed to predict transient 

laminar forced convection heat transfer inside a circular tube 
under arbitrary time-dependent heat flux.  Slug flow condition 
is assumed for the velocity profile inside the tube. The solution 
to the time-dependent energy equation for a step heat flux 
boundary condition is generalized for arbitrary time variations 
in surface heat flux using a Duhamel’s integral technique. A 
cyclic time-dependent heat flux is considered and new compact 
closed-form relationships are proposed to predict: i) fluid 
temperature distribution inside the tube ii) fluid bulk 
temperature and iii) the Nusselt number. A new definition, 
cyclic fully-developed Nusselt number, is introduced and it is 
shown that in the thermally fully-developed region the Nusselt 
number is not a function of axial location, but it varies with 
time and the angular frequency of the imposed heat flux. 
Optimum conditions are found which maximize the heat 
transfer rate of the unsteady laminar forced-convective tube 
flow. We also performed an independent numerical simulation 
using ANSYS to validate the present analytical model. The 
comparison between the numerical and the present analytical 
model shows great agreement; a maximum relative difference 
less than 5.3%.    

 
1. INTRODUCTION 

For optimal design and accurate control of heat transfer in 
emerging sustainable energy applications and next-generation 
heat exchangers, it is crucial to develop an in depth 

understanding of thermal transients. Thermal transient may be 
accidental and random or may be of cyclic nature. Generally, 
processes such as start-up, shut-down, power surge, and 
pump/fan failure impose such transients [1–4].    

Examples of thermal transient in sustainable energy 
applications include:  i) the variable thermal load from thermal 
solar panels in Thermal Energy Storage (TES) systems; ii) the 
variable thermal load on power electronics of solar/wind/tidal 
energy conversion systems; and iii) the variable load of power 
electronics and electric motor of Hybrid Electric Vehicles 
(HEV), Electric Vehicles (EV), and Fuel Cell Vehicles (FCV). 
The following provides a brief overview on the importance and 
the trends of the above thermal engineering applications. 

 Solar thermal systems are widely utilized in solar power 
plants and are being widely commercialized.  Solar power 
plants has seen about 740 MW of generating capacity added 
between 2007 and the end of 2010 bringing the global total to 
1095 MW [4]. Such growth is expected to continue as in the US 
at least another 6.2 GW capacity is expected to be in operation 
by the end of 2013 [4]. However, the growth of such 
technology is hindered by the inherent variability of solar 
energy subjected to daily variation, seasonal variation, and 
weather conditions [1–3]. To overcome the issue of the 
intermittency, TES systems are used to collect thermal energy 
to smooth out the output and shift its delivery to a later time. 
Single-phase sensible heating systems or latent heat storage 
systems utilizing Phase Change Materials (PCM) are used in 
TES; transient heat exchange occurs to charge or discharge the 
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storage material. From the technical point of view, one of the 
main challenges facing  TES systems is designing suitable heat 
exchangers to work reliably under unsteady conditions [1, 2], a 
key issue that this research attempts to address. 

To assure reliable performance of electronic components, 
the temperature of different components should be maintained 
below recommended values. The temperature of power 
electronics can vary significantly with the fluid flow and the 
applied heat flux over time. Thus, it is important to investigate 
the transient thermal behavior of these systems, especially 
during peak conditions. Furthermore, new application of 
transient forced convection has emerged by the advent of HEV, 
EV, and FCV. Since introduced, the sales of such vehicles have 
grown at an average rate of more than 80% per year. As of 
October 2012, more than 5.8 million HEVs have been sold 
worldwide since their inception in 1997 [5]. Their hybrid 
powertrain and power electronics electric motors (PEEM) 
undergo a dynamic thermal load as a direct result of 
driving/duty cycle and environmental conditions. Conventional 
cooling systems are designed based on a nominal steady-state, 
typically a “worst” case scenario, which may not properly 
represent the thermal behavior of various applications or duty 
cycles. This clearly indicates the enormity of the pending need 
for in-depth understanding of the instantaneous thermal 
characteristics of the above-mentioned thermal systems. 
Successful and intelligent thermal design of such dynamic 
systems lead to  the design of new efficient heat exchangers to  
enhance the overall efficiency and reliability of TES and PEEM 
cooling solutions, which in case of the HEV/EV/FCV means 
significant improvement in  vehicle efficiency/reliability and 
fuel consumption [4–10].  

In all the above-mentioned applications, transient heat 
transfer occurs in heat exchangers subjected to arbitrary time-
dependent heat flux. This phenomenon can be represented by 
unsteady forced-convective tube flow, which is the ultimate 
goal of this study.  

 
 

1.1. PERTINENT LITERATURE 
Study on the transient forced-convective tube flow was 

begun by investigating the thermal response of the tube flow 
following a step change in wall heat flux or temperature. 
Sparrow and Siegel [12] conducted an analysis of transient heat 
transfer for fully developed laminar flow forced convection in 
the thermal entrance region of circular tubes. The unit step 
change in the wall heat flux or in the wall temperature was 
taken into account. Siegel and Sparrow [13] carried out a 
similar study in the thermal entrance region of flat ducts. Later 
Siegel [14] studied laminar slug flow forced convection heat 
transfer in a tube and a flat duct where the walls were given a 
step-change in the heat flux or alternatively a step-change in the 
temperature. The solution indicated that, for slug flow, steady 
state was reached in a wavelike fashion as fluid traveled 
downstream the channel from the entrance. Siegel [15] 
investigated transient laminar forced convection with fully 
developed velocity profile. It was shown that the slug flow 

assumption revealed the essential physical behavior of the 
considered system. The periodic thermal response of channel 
flows to position- and time-dependent wall heat fluxes was also 
addressed in the literature.  Siegel and Perlmutter [16] analyzed  
laminar forced convection heat transfer between two parallel 
plates with specific heat production. The heat production 
considered to vary with time and position along the channel. 
Some typical examples were considered for the heat 
production, and the tube wall temperature was evaluated for 
different specific cases. Perlmutter and Siegel [17] studied two-
dimensional unsteady incompressible laminar duct flow 
between two parallel plates. Transient velocity was determined 
to account for the change in the fluid pumping pressure. An 
analytical-numerical study was carried out in Ref. [18] on the 
laminar forced convection in a flat duct with wall heat capacity 
and with wall heating variable with axial position and time. 
Most of the pertinent papers on transient forced convection are 
analytical-based; a summary of the literature is presented in 
Table 1.  
Our literature review indicates: 
 There is no model to predict the coolant behavior inside a 

conduit subjected to dynamic thermal load. 
 The effects of a cyclic heat flux on the thermal performance 

of a tube flow are not investigated in the literature. 
 There is no model to predict the Nusselt number of a tube 

flow under arbitrary time-dependent heat flux.  
 There is no model to determine optimized condition that 

maximizes the heat transfer rate of transient forced-
convective tube flow. 
In this study, a new all-time model is developed to 

accurately predict:  i) fluid temperature distribution inside the 
tube; ii) the fluid bulk temperature; and iii) the Nusselt number 
for a convective tube flow subjected to  an arbitrary time-
dependent heat flux. In most relevant papers [12–18], the 
transient thermal behavior of a system is evaluated based on the 
dimensionless wall heat flux, Q , considering the difference 
between the local tube wall and the initial fluid temperature. In 
this study, however, a new local Nusselt number is defined 
based on the local temperature difference between the tube wall 
and the fluid bulk temperature at each axial location. We are of 
the opinion that our definition has a better physical meaning. 
Furthermore, a new definition, i.e. cyclic fully-developed 
Nusselt number, is introduced and it is shown that in the 
thermally fully-developed region the Nusselt number is not a 
function of axial location, but it varies with time and the 
characteristics of the imposed heat flux on the tube. In addition, 
optimum conditions are found to maximize the heat transfer 
rate of the tube flow under arbitrary time-dependent heat flux.  

To develop the present analytical model the fluid flow 
response to a step heat flux is taken into account. A Duhamel’s 
integral method is carried out on the thermal response of the 
fluid flow under the step heat flux, following Ref. [14]. A cyclic 
time-dependent heat flux is taken into consideration, and the 
thermal characteristics of the fluid flow are determined 
analytically under such heat flux boundary conditions. Any type 
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of time-dependent heat flux can be decomposed into simple 
oscillatory functions using a Fourier series transformation. 
Thus, the results of this study can be readily applied to 

determine the transient fluid flow response under a dynamically 
varying heat flux. 

 
  

Table 1: Summary of the existing analytical models for unsteady, internal convective heat transfer 

Author Boundary condition 
and velocity profile Geometry Notes 

Sparrow and Siegel [12] 
                      

Step wall temperature/ heat flux 
Fully developed flow Circular duct Algebraic expressions to find the 

tube wall temperature/heat flux. 

Siegel and Sparrow [13] Step wall temperature/heat flux 
Fully developed flow Flat duct Algebraic expressions to find the 

tube wall temperature/heat flux. 

Siegel [14] Step wall temperature/ heat flux 
Slug flow Circular/flat duct 

Series solutions to find the 
temperature distribution inside the 
fluid. 

Siegel [15] Step wall temperature 
Fully developed flow Circular duct 

Series solutions to find the 
temperature distribution inside the 
fluid. 

Siegel and Perlmutter  [16]  Time-dependent heat flux 
Slug /transient flow Flat duct Reported temperature distribution 

inside the fluid. 

 Perlmutter and Siegel [17] Step wall temperature 
Fully-developed flow Flat duct 

Evaluated tube wall temperature 
considering the tube wall thermal 
inertia. 

Siegel [18] Time-dependent heat flux 
Slug flow Flat duct                                                                                                                             

Evaluated tube wall temperature 
considering the tube wall thermal 
inertia. 

 
2. GOVERNING EQUATIONS 

Figure 1 shows a circular tube of diameter ܦ which is 
thermally insulated in the first sub-region, 0x  , and is heated 
in the second sub-region , 0x  . The tube and fluid are 
assumed to be initially isothermal at temperature 0T .  The 
entering fluid temperature is also maintained at 0T throughout 
the heating period. The wall at the second sub-region is given 
an arbitrary time-dependent heat flux,  q t . It is also 
assumed that the entering fluid temperature and the first sub-
region are maintained at 0T throughout the heating period. It 
should be noted that the second sub-region may be long 
enough so that the fluid flow can reach thermally fully 
developed condition along this section, see Fig. 1. It is 
intended to determine the evolution of the tube wall 
temperature, fluid bulk temperature and the Nusselt number as 
a function of time and space for the entire range of the Fourier 
number under arbitrary time-dependent heat flux. 

The energy equation for a fluid flowing inside a circular 
duct in this instance is shown by Eq. (1): 

 
 

                   

1T T Tu r
t x r r r

           
                         (1) 

 
Figure 1. Schematic of the two-region tube and the 

coordinate system. 
 
For the case of Slug Flow (SF), see Section  3 for more 

detail, the velocity distribution and the energy equation can be 
written as follows: 
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The dimensionless variables are defined as follows: 

2

tFo
R


  4

Re.Pr

x
DX   

0

r

T T
q D

k




   r
R

   

where Fo is the Fourier number and X is the dimensionless 
axial location  that  characterizes the flow inside a conduit, 
respectively.  

 
As previously mentioned, the final goal of this study is to 

find the transient thermal response of forced-convective tube 
flow under an arbitrary time-dependent heat flux. Therefore, a 
general prescribed heat flux is assumed as follows: 

 
                            . ,rq Fo q X Fo            (4) 

where rq  is the heat flux amplitude and  ,X Fo is an 
arbitrary function of space and time, respectively. 
Consequently, Eq. (4) is subjected to the following initial and 
boundary conditions: 

 , ,0 0X    Initial condition, 

 0, , 0Fo    Entrance condition, 

 
1

1/ ( , )
2

X Fo


  


    Heat flux at the tube wall  
for 0Fo  , 

 
0

/ 0


 


    

 

 
Symmetry at the center 
line. 
 

(5) 

3. MODEL DEVELOPMENT 
In this section, a new all-time model is developed 

considering; i) short-time response and ii) long-time response. 
The following assumptions are made: 
 Incompressible  flow, 
 Constant thermo-physical properties, 
 Negligible viscous dissipation, 
 Negligible axial heat conduction,  
 No thermal energy sources within the fluid, 
 Uniform velocity profile along the tube, i.e., slug flow. 

Slug flow assumption can predict the thermal behavior of 
any type of fluid flow close to the tube entrance where the 
velocity profile is developing and has not reached the fully 
developed condition [14], [18]. We plan to study the transient 
thermal response of the tube flow with fully developed 
velocity profile under dynamically varying heat flux in the 

future. When a cylinder at uniform temperature 0T  is suddenly 
subjected to a step heat flux q at its surface, the temperature 
response is [14]:  

 
 

2
2

00
2

1 0

2 1
/ 8

n nFow
s

nr r n n

JT T q Fo e
q D k q J

  


 






   
        

   (6) 

where s is the dimensionless temperature of the fluid 
under a step heat flux, n are the positive roots of 1( ) 0J   , 
and 1( )J  are the Bessel functions of the first kind, 
respectively. The energy equation for a tube flow is linear, i.e., 
Eq. (1). This shows the applicability of a superposition 
technique to extend the response of the fluid flow for a step 
heat flux to the other general cases as discussed in [16]. As 
such, by using Duhamel’s integral [19], the thermal response 
for a step heat flux, Eq. (6), can be generalized for an arbitrary 
time variations in surface heat flux. 
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 2 20

1 00 0

n n

Fo Fo
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d e e d

q J q
     

  







 
 

  
    

 (7) 

This expression is only valid when the element is initially 
isothermal, so the treatment here is limited to the cases where 
the channel is initially isothermal. However, the extension to 
the other cases can be achieved by superposition techniques, 
as discussed in [16]. 

As shown in Fig. 2, in the Eulerian coordinate system, the 
observer is fixed at a given location x along the tube and the 
fluid moves by.  

 

 
 

Figure 2. The methodology adopted to find the 
transient thermal response of the tube flow under 

arbitrary time-dependent heat flux. 
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fluid which was originally outside the tube when the transient 
began. Therefore, the heat-flow process in this region is not 
affected. Hence, the behavior in this region is then that of a 
tube with infinite length in both directions. This means that the 
convective term in the energy equation, Eq. (1), is identically 
zero and a pure transient “heat-conduction” process takes 
place. On the other hand, for X Fo the observer situated at 
X will see the passing fluid which was in the entrance region, 

insulated section, when the transient was initiated. This is 
considered as the long-time response of the fluid flow [16]. 
Therefore, the solution consists of two regions that should be 
considered separately. The methodology considered in this 
study is shown schematically in Fig. 2. 

  
3.1. SHORT-TIME RESPONSE, X Fo  

For the sake of generality, we consider a case in which the 
heat flux varies with both time and space,  ,q X Fo . We first 
consider the region where X Fo . A fluid element that 
reaches X at time Fo was already in the heated section at the 
location X Fo at the beginning of the transient. As this 
element moves along, it is subjected to the heat flux variations 
in both time and space. At a time   between 0  and Fo , the 
element is arrived to the location X Fo   . Thus, the heat 
flux that the element is subjected to at that time is

 ,q X Fo     . This is substituted into Eq. (7) to find the 
short-time response for the fluid temperature distribution [16]. 
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 
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








  
 



  




 
      (8) 

It should be noted that according to Eq. (8) when the 
imposed heat flux is only a function of time,  q q Fo  , the 
short-time thermal response of the fluid flow is not dependent 
upon the axial position. However, it is a function of time and 
the characteristics of the imposed heat flux.  

 
3.2. TRANSITION TIME, X Fo  

For each axial position, the short-time and long-time 
responses are equal at X Fo . This is the dimensionless 
transition time for a given axial position. Therefore, the time 
Fo X is a demarcation between the short-time and long-time 
responses for each axial position. For instance, for an 
arbitrarily-chosen axial position 0.4X  , the dimensionless 
transition time is 0.4Fo  . This arbitrary example will be 
used throughout the analysis in this paper.  
 
3.3. LONG-TIME RESPONSE, X Fo  

Now we consider the region, where X Fo . The element 
that reaches X at time Fo , entered the channel at the time  

Fo X and began to be heated. As time elapses from when 
the transient begins, this element will reach the location  at 
the time Fo X   .  Thus, the heat flux that the element is 
subjected to at that location is  ,q Fo X    . Substituting 
this into Eq. (7) results in Eq. (9), which represents the long-
time response of the flow at each axial position. 
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 
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         (9) 

According to Eq. (9), the long-time thermal response of 
the fluid flow is a function of time, axial position and the 
characteristics of the imposed heat flux. 

 
4. CYCLIC THERMAL TRANSIENTS 

Any type of prescribed time-dependent heat flux can be 
decomposed into periodic functions as the summation of a set 
of simple oscillating functions, namely sines and cosines by 
Fourier series. As such, we develop the present model for a 
cyclic heat flux, and the results can be generalized to cover the 
cases with arbitrary time variations in surface heat flux by 
using a superposition technique.  

The following expression is considered as a cyclic heat 
flux imposed on the tube wall, 

                   , 1 sinrq Fo q Fo              (10) 

where  is the angular frequency of the imposed heat flux 
which characterizes the behavior of the prescribed cyclic heat 
flux. 

The following compact relationship is developed in this 
study to present the temperature distribution inside the fluid in 
a compact form with a maximum relative difference of 1%.  

                 
 
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2
0
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1 0

2 1
8

n

n n n

J
J
  

 


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
                         (11) 

 
After substituting Eq. (10) into Eqs. (8) and (9), we take 

Eq. (11) into account, and the short-time and long-time 
temperature distribution inside the fluid are obtained. In this 
study we considered the first 60 terms of the series solutions. 

 
Short-time response, X Fo : 
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(12) 
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Long-time response, X Fo : 

      
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(13) 

 
In addition, the tube-wall temperature can be defined by 

evaluating Eqs. (12) and (13) at 1  . Since using the above 
series solution is tedious,  the following new compact, easy-to-
use relationships are developed in this study to predict the 
short-time and long-time tube-wall temperatures.  

 
Short-time tube-wall temperature, X Fo : 

      

   

   

1 1, 1 cos
8

0.086 exp 16.8 0.078 sin 6.75

w Fo Fo Fo

Fo Fo

  




      
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      (14) 

 
Long-time tube-wall temperature, X Fo  : 

 

      

   

1, , cos cos

1 0.086 exp 16.8 0.078 sin 6.75
8

w X Fo X Fo X Fo

X Fo

   




      

      
  (15) 

The maximum and average relative difference of the 
values predicted by Eqs. (14) and (15) compared with the 
exact values obtained by Eqs. (12) and (13) are 6.1 and 2.1%, 
respectively. In addition, the fluid bulk temperature can be 
obtained by performing a heat balance on an infinitesimal 
differential control volume of the flow: 

          

 
2

4

m
p m p m p

m
p

T
mc T q D dx mc T mc dx

x
TDc dx
t






      
  
   

  

        
(16) 

The dimensionless form of Eq. (16) is: 

                

 , m m

r

q X Fo
q Fo X

   
 

  
                           

(17) 

Equation (17) is a first-order partial differential equation 
which can be solved by the method of characteristics [19]. The 
short-time and long-time fluid bulk temperatures can be 
obtained as follows. 

 
 

    

1 1 cos
, ,

1 cos ( ) cos
m

Fo Fo X Fo
Fo X

X Fo X Fo X Fo


 

 


      
    


 
(18) 

 
In this study, the local Nusselt number is defined based on 

the difference between the tube-wall and fluid bulk 
temperatures. 

    
 1 sin/ ( , )

D
w m w m w m

Foq D k X FoNu
T T


   


  

  
             (19) 

where w  and m are the dimensionless wall and fluid bulk 
temperatures obtained previously, Eqs. (12), (13), and (18), 
respectively. Therefore, the short-time and long-time Nusselt 
numbers are obtained as follows: 
 
Short-time Nusselt number, X Fo :     

 

 
 

2

2

2 2 4

2
1

,

1 sin

1
8

cos( ) sin( )

n

n

D

Fo

n n

n Fon

Nu Fo

Fo

e

Fo Fo e










  


 







 





 
  

   
        


 (20) 

 

Long-time Nusselt number, X Fo : 

        

 

   

 

 

2

2

2 2 4

2

1 2

( , , )
1 sin

1
8

cos sin

sin

cos

n

n

D

X

n n

n

n
n

X

Nu X Fo
Fo

e

Fo Fo

Fo X
e

Fo X










  


 























 
  

 
                               



            (21) 

 
Using the compact relationships developed for the tube 

and wall temperatures, i.e. Eqs. (14) and (15), the local 
Nusselt number can also be calculated  by the following 
compact closed-form relationships. 
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Short-time Nusselt number, X Fo : 

  

 

   

( , )
1 sin

1 0.078 sin 6.75 0.086 exp 16.8
8

DNu Fo
Fo

Fo Fo











     
     

(22) 

Long-time Nusselt number, X Fo : 
 

   

 

   

( , , )
1 sin

1 0.078 sin 6.75 0.086 exp 16.8
8

DNu X Fo
Fo

Fo X











     

   (23) 

For 0.05Fo  , Eqs. (22) and (23) predict the exact 
results, Eqs. (20) and (21), with the maximum and average 
relative difference of 10 and 4%, respectively.  

For 0.2X  , 8   the long-time Nusselt number, Eq. 
(23), can be written as follows: 

 

               

 

 

1 sin
( , )

1 0.078 sin 6.75
8

D

Fo
Nu Fo

Fo









  
      (24) 

As discussed later in Section  6, this is the cyclic fully-
developed Nusselt number for 0.2X   which is not a 
function of the axial position. However, it varies arbitrarily 
with time and the angular frequency. Since the local Nusselt 
number is a function of both time and space, the average 
Nusselt number for an arbitrarily chosen time-interval between 
0 and Fo  is defined as follows: 

           0 0

1( )
Fo X

D DNu Nu d d
Fo X  

  
 


                     (25) 

5. NUMERICAL STUDY 
To validate the proposed analytical model, an independent 

numerical simulation of the axisymmetric flow inside a 
circular tube is done using the commercial software, ANSYS® 
Fluent [20]. A user defined code (UDF) is written to apply the 
dynamic heat flux on the tube wall, Eq. (10). Furthermore, the 
assumptions stated in Section  3 are used in the numerical 
analysis, however, the fluid axial conduction is not neglected 
in the numerical analysis. Grid independence is tested for 
different cases and the size of computations grids is selected 
such that the maximum difference in the predicted values for 
the fluid temperature is less than 2%. Water is selected as the 
working fluid for the numerical simulations. The maximum 
relative difference between the analytical results and the 
numerical data is less than 5.3%, which are discussed in detail 
in Section 6. 

 
 
 

6. RESULTS AND DISCUSSION 
Throughout this study, the results are represented for an 

arbitrarily-chosen axial position of 0.4X  ; the results for 
other axial positions are similar. Variations of the 
dimensionless tube wall temperature against the Fo number, 
Eqs. (14) and (15), for a few axial positions along the tube are 
shown in Fig. 3, and compared with the numerical data 
obtained in Section  5 of this study.  
 
As shown in Fig. 3, 
 There is an excellent agreement between the analytical 

results Eqs. (14),(15) and the numerical data over the 
short-time response. However, there is a small discrepancy 
between the numerical data and analytical results in the 
long-time response region, X Fo . The maximum relative 
difference between the present analytical model and the 
numerical data is less than 5.3%. 

 The present model predicts an abrupt transition between 
the short-time and long-time responses. The numerical 
results, however, indicate a smoother transition between 
the responses. This causes the numerical data to deviate 
slightly from the analytical results as the long-time 
response begins. 

 There is an initial transient period of pure conduction 
during which all of the curves follow along the same line,
X Fo .  

 When Fo X , each curve moves away from the common  
line i. e. pure conduction response and adjusts towards a 
steady oscillatory behavior at long-time response, Eq. (15). 
The wall temperatures become higher for larger X values, 
as expected, because of the increase in the fluid bulk 
temperature in the axial direction. 
 

 
Figure 3. Variations of the dimensionless tube wall 
temperature versus the Fo number at 0.4X  for a 

cyclic heat flux  ` 1 sin 8rq q Fo     . 
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 Figure 4 shows the variations of the dimensionless fluid 
temperature at different radial positions across the tube versus 
the Fo number, Eqs. (12) and (13). Step heat flux, i.e. when

0  , and cyclic heat flux with angular frequency fixed at 
an arbitrarily-chosen value of 8 , are considered. As such, 
the short-time and long-time fluid temperature at different 
radial positions at an arbitrarily-chosen axial position, 0.4X 
, are obtained using Eqs. (12) and (13).  
 
From Fig. 4, the following conclusions can be drawn: 
 As expected at any given axial position, the fluid 

temperature oscillates with time in case of a cyclic heat 
flux. For a step heat flux, the solution does not fluctuate 
over time.  

 At any given axial position, there is an initial transient 
period, which can be considered as pure conduction, i.e., 
the short-time response for X Fo .  However, as 
pointed out earlier, each axial position shows steady 
oscillatory behavior for X Fo  at the long-time 
response. Therefore, for the arbitrarily-chosen axial 
position of 0.4X  , the long-time response begins at 

0.4Fo  , and shows the same behavior all-time 
thereafter. 

 For a cyclic heat flux, the fluid temperature oscillates 
around the associated response for the step heat flux with 
the same magnitude. 

 

 

Figure 4. Variations of the dimensionless fluid 
temperature at an arbitrarily-chosen axial position of 

0.4X  and angular frequency of 8 at different 
radial positions across the tube against the Fo

number for cyclic and step heat fluxes. 
 
Figure 5 shows the long-time tempearture distribution inside 
the fluid at a given axial position of 0.4X  , at different 
radial positions for a cyclic heat flux with the angular 
frequency fixed at 8  , Eq. (13).  

One can conclude the following from Fig. 5: 
 The shift between the peaks of the temperature profile is 

marked at different radial positions. This shows a 
“thermal lag” (inertia) of the fluid flow, which increases 
towards the centerline of the tube. This thermal lag  is 
attributed to the fluid thermal inertia. 

 Considering Eq. (13), the maximum temperature inside 
the fluid for different radial positions at an arbitrarily-
chosen axial position, 0.4X  , can be found as follows 
for 0.5 0.8Fo  . Obviously, the same approach can be 
applied to other axial locations.  

        
0.4 max0 5.5 3.995X

d Fo
dFo


        

 

 
 

Figure 5. Peak-shifting trend of maximum long-
time temperatures inside the fluid at different radial 
positions at an arbitrarily-chosen axial position of 

0.4X  and angular frequency of 8 . 
 
Figure 6 shows the variations of the dimensionless tube-

wall temperature at a given axial position of 0.4X  , versus 
the Fourier number and the angular frequency, Eqs. (14) and 
(15).  

 
The followings can be concluded from Fig. 6: 
 At the two limiting cases where: i) 0  and ii)  , 

the fluid flow response yields that of a step heat flux. 
 When a sinusoidal cyclic heat flux with high angular 

frequency is imposed on the flow, the fluid does not follow 
the details of the heat flux behavior. Therefore, for very 
high angular frequencies, the fluid flow acts as if the 
imposed heat flux is constant at “the average value” 
associated with zero frequency for the sinusoidal heat flux 
in this case.  

 The tube wall temperature can deviate considerably from 
that of the step heat flux at the small values of the angular 
frequency, i.e.  2 11 rad  .  
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 The conventional way to decrease the wall temperature of 
heat exchangers is to cool down the working fluid. 
However, it is shown that changing the heat flux frequency 
can also dramatically alter the tube wall temperature.  

 The highest temperature for the tube wall occurs for small 
values of angular frequency. Considering Eq. (15), the 
highest long-time tube wall temperature occurs at 

 0 1.7wd
rad

d





   .  

 Irrespective of Fo number, the amplitude of the 
dimensionless tube wall temperature decreases remarkably 
as the angular frequency increases. As mentioned earlier, 
this happens due to the fact that for high angular 
frequencies the fluid flow response approaches to that of 
the step heat flux.   

 At a given axial position, the maximum long-time tube 
wall temperature is remarkably higher than that of short-
time response. 
 
 

 
      (a)  

 
                              (b) 

 
(c) 

 
Figure 6: Variations of the dimensionless tube-wall temperature at an arbitrarily-chosen axial position of 

0.4X  against (a): the Fourier number for different angular frequencies of the heat flux, (b) the angular frequency 
at different Fourier numbers, and (c) the angular frequency and the Fourier number. 

 
 

Figure 7 shows the variations of the dimensionless fluid 
bulk temperature at a given arbitrary axial position of 0.4X  , 
versus the Fourier number and the angular frequency, Eq. (18). 

 
From Fig. 7, one can conclude:  
 Irrespective of Fo number, the amplitude of the 

dimensionless fluid bulk temperature decreases remarkably 
as the angular frequency increases. 

  The fluctuations of the fluid bulk temperature at high 
angular frequencies are small compared to that of the tube 
wall temperature. 

  Comparing Figs. 6 and 7, the fluid bulk temperature 
shows a similar behavior as the tube wall temperature 
with the Fourier number and the angular frequency. 
However, as expected at each axial position, the fluid bulk 
temperature is less than the tube-wall temperature 
regardless of the angular frequency and Fo number. 
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                                                  (a)                (b)  

 
                                                                                            (c)  

 
Figure 7: Variations of the dimensionless fluid bulk temperature at an arbitrarily-chosen axial position 

of 0.4X  against (a): the Fourier number for different angular frequencies of the heat flux, (b) the angular 
frequency at different Fourier numbers, and (c) the angular frequency and the Fourier number. 

 
 Figure 8 shows the variations of the local Nusselt number 

at a given axial position, 0.4X  , with the Fo number and the 
angular frequency, Eqs. (22) and (23). Regarding Fig. 8(a), the 
conventional “quasi-steady” model is a simplified model which 
assumes that the convective heat transfer coefficient is constant, 
equal to the fully developed condition in the channel [16]. 
 
The following can be concluded from  Fig. 8: 
 Changing the heat flux frequency alters the frequency of the 

Nusselt number. However, it does not change the amplitude 
of the Nusselt number considerably. 

 The values of the transient Nusselt number deviate 
considerably from the ones predicted by the conventional 
quasi-steady model. The values of the Nusselt number 
predicted by Eqs. (22) and (23) can be 8 times lower than 
that of the quasi-steady model when the heat flux and hence 
the Nusselt number are zero. Therefore, the conventional 
models fail to predict the transient Nusselt number 
accurately. 

 The Nusselt number oscillates slowly with the Fo number 
for small angular frequencies of the heat flux. Therefore, the 
values of the Nusselt number are higher than that of the 
cyclic heat flux with large angular frequencies over the 
entire range of the Fo number. Therefore, the optimum heat 
transfer occurs at very small values of the angular 
frequency. This will be discussed later in more details in 
this section. 

 At initial times, the Nusselt number oscillates slowly with 
the angular frequency. This is corresponding to the slow 
fluctuations of the heat flux at initial times. 

 As expected, increasing the angular frequency of the heat 
flux augments the frequency of the Nusselt number 
fluctuations. This happens due to the fact that the Nusselt 
number is zero at times in which the imposed cyclic heat 
flux is zero.  
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 Regardless of the angular frequency, at very initial transient 
period, the Nusselt number is much higher than that of the 
long-time response.  

 At initial times, the values of the Nusselt number slightly 
increase with an increase in the angular frequency. 
  

 The fluctuations of the transient Nusselt number occur 
around the fully-developed steady-state value. Considering 
the slug flow inside a circular tube, the value of the fully-
developed Nusselt number for the steady-state condition is: 

8DNu  as predicted by the quasi-steady model [21]. 
 

 
                                                 (a)  

 
       (b) 

 
(c) 

Figure 8: Variations of the local Nusselt number at an arbitrarily-chosen axial position of 0.4X   against (a): 
The Fourier number for different angular frequencies and comparison with the “Quasi-steady” model (b): the 

angular frequency for different Fourier numbers, and (c): the Fourier number and the angular frequency. 
 
 
Depicted in Fig. 9 are the variations of a cyclic heat flux, 

 1 sin 8rq q Fo     , and the corresponding Nusselt 
numbers of the fluid flow at a few axial positions along the 
tube. 

  
The following highlights the trends in Fig. 9: 
 At the inception of the transient period, the Nusselt number 

of all axial positions is only a function of time. 

 The troughs of the Nusselt number at different axial 
positions are the same corresponding to the times at which 
the wall heat flux is zero. 

 The values of the Nusselt number decrease at higher axial 
locations, i.e., further downstream. This is attributed to the 
boundary layer growth which insulates the tube wall, and 
reduces the rate of the heat transfer.  

 For axial positions 0.2X  , the Nusselt number does not 
vary with an increase in axial position. This indicates that 
similar to the steady-state condition at 0.2X  , the 
boundary layers on the tube wall merge and the Nusselt 
number reaches its cyclic fully-developed value. 
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 As such, the thermally fully-developed region in transient 
internal forced convection, 0.2X  , can be defined as the 
region in which the Nusselt number does not vary with x
any further, however; it can be an arbitrary function of time 
and the characteristics of the imposed heat flux. 
 

Eq. (24) is developed in this study to predict the cyclic fully-
developed Nusselt number with the Fourier number and the 
angular frequency. Regarding Eq. (24), the cyclic fully- 
developed Nusselt number is not a function of axial position. 
However, it fluctuates arbitrarily with time and the angular 
frequency. 

 

 
Figure 9. Variations of the applied heat flux, 

 ` 1 sin 8rq q Fo     , and the corresponding Nusselt 
number for a few axial positions along the tube. 

 

 
Figure 10: Variations of the average Nusselt 

number with the angular frequency and comparison 
with the quasi-steady model. 

 
Variations of the average Nusselt number with the angular 

frequency are shown in Fig. 10, and compared with the quasi-

steady model. Average entrance Nusselt number, 0 0.2X  , 
and the average Nusselt number for an arbitrarily-chosen 
interval of 0 0.8X   are considered and the integral in Eq. 
(25) is carried out numerically for an arbitrary time interval of 
0 0.8Fo  . 
 

 One can conclude the following from Fig. 10, 
 The average Nusselt number for a tube flow increases 

as the value of the axial position, 4 /
Re.Pr

x DX   

decreases. This can be achieved by: i) decreasing the 
tube length; ii) increasing the tube diameter; iii) 
increasing the Reynolds number of the flow; and iv) 
using  fluids with high Pr numbers such as oils. 

 The maximum average Nu number occurs at the 
angular frequency of  2.04 rad  . 

 The values of the averaged Nusselt number vary 
significantly with the angular frequency of the imposed 
heat flux, while the conventional models, e.g., quasi-
steady model fail to predict such variations of the 
Nusselt number with time. 

 The maximum average Nusselt number for the entrance 
region, 0 0.2X  , evaluated by Eq. (25) is almost 
21% higher than that of the quasi-steady model at the 
optimum value of the angular frequency i.e. 

 2.04 rad  .  

7. CONCLUSION 
A new full-time-range analytical model is developed to 

predict the transient thermal performance of forced-convective 
tube flow. Slug flow condition is considered for the velocity 
distribution  inside a circular tube. To develop the model, the 
transient response for a step heat flux is considered, and 
generalized for an arbitrary time-dependent heat flux by a 
superposition technique i. e. Duhamel’s integral. A prescribed 
cyclic time-dependent heat flux is considered and the thermal 
characteristics of the flow are obtained. As such,  new all-time 
models are developed to evaluate: i) temperature distribution 
inside the fluid; ii) fluid bulk temperature; and iii) the Nusselt 
number. Furthermore, compact closed-form relationships are 
proposed to predict such thermal characteristics of the tube 
flow with the maximum relative difference of less than 10%.   
Optimum conditions are found to maximize the rate of the heat 
transfer in transient forced-convective tube flow. 
 
The highlights of the present study can be listed as: 
 For each axial position along the tube, there is an initial 

transient period of “pure-conduction-like” heat transfer in 
which the thermal characteristics of the tube flow is not a 
function of space and depends only on the time and the 
characteristics of the imposed heat flux, i.e. short-time 
response X Fo . 

 When Fo X , the thermal response of the flow moves away 
from the pure-conduction response and adjusts towards a 
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steady oscillatory behavior at long-time response. This 
response remains the same all time thereafter, X Fo ; 
which depends on space, time, and the characteristics of the 
imposed heat flux.  

 There is a thermal lag in the thermal response of the  fluid  
temperature which increases towards the centerline of the 
tube due to the thermal inertia of the fluid. 

 At the two limiting cases the thermal response of the fluid 
yields that of the step heat flux: i) 0   and ii) . 

 The short-time Nusselt number is much higher than that of 
the long-time response.    

 The maximum average Nusselt number occurs at the 
angular frequency of  2.04 rad  .  

 For axial positions 0.2X  , the Nusselt number does not 
vary with an increase in axial position. At 0.2X  , the 
boundary layers on the tube wall merge and the Nusselt 
number reaches its cyclic fully-developed value. 

 The thermally fully-developed region in transient internal 
forced convection, 0.2X  , is defined as the region in 
which the Nusselt number does not vary with x any further. 
However, it can be an arbitrary function of time and the 
characteristics of the imposed heat flux. 

 Compact closed-form relationships are proposed to predict 
the i) tube-wall temperature; ii) fluid bulk temperature; and 
iii) the Nusselt number. 

The obtained analytical results are verified successfully with 
the obtained numerical data. The maximum relative difference 
between the analytical results and the numerical data is less 
than 5.3%. It is also observed that the conventional quasi-
steady model fail to predict the transient Nusselt number 
accurately. 

NOMENCLATURE 
  Density,  3/kg m  

pc  heat capacity,  / .J kg K  
D  Tube diameter,  m  
Fo  Fourier number, 2/t R  
J  Bessel function, Eq. (6) 
k  Thermal conductivity,  / .W m K  
m  Mass flow rate,  /kg s  

DNu Nusselt number, /hD k  
Pr  Prandtl number,  /   
q  Thermal load (Heat flux),  2/W m  
Q  Dimensionless heat flux, 1/ w  
u  Velocity,  /m s  
x  Axial distance from the entrance of the heated                                 

section,  m  r  Radial coordinate measured from tube 
centerline,  m  R  Tube radius,  m  

T  Temperature,  K  

Re  Reynolds number, /UD   
t  Time,  s  

      X  Dimensionless axial distance, 4 / Re.Pr .x D  
Greek letters 

        Thermal diffusivity,  2 /m s  
       ν Kinematic viscosity,  2 /m s  
        Fluid density,  3/kg m  
        Dimensionless coordinate, /r R  

        Dimensionless temperature, 0

r

T T
q D k





 

        Arbitrary function of X  and Fo  

      n  Positive roots of the Bessel function, Eq. (6) 
       ω Heat flux angular frequency,  /rad s  

        Dummy Fo variable 
       ζ Dummy X variable 
Subscripts 
       0 Inlet 

      m  Mean or bulk value 

      w  wall 

      r  Reference value 

      s  Step heat flux 
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